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6
Processes Based on

Fractional Brownian
Motion

TheRussian mathematicianAndrei
Nikolaevich Kolmogorov (1903–
1987)substantially advanced the art
of stochastic processes, particularly
those involving turbulence and scal-
ing; he formulated the concept of
fractional Brownian motion in 1940.

Together with Benoit Mandelbrot,
the American probabilistJohn W.
Van Ness (born 1936)carried out
a seminal study in 1968 that used
the concept of self-similarity to ad-
vance the theory of fractional Brow-
nian motion.
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This chapter sets forth the properties of fractional Brownian motion, fractional
Gaussian noise, and several related fractal processes. These continuous-time pro-
cesses serve handily as rates for point processes. When used as the drivers for doubly
stochastic or integrate-and-reset constructs, they impart their fractal characteristics to
the ensuing fractal-rate point processes, thereby providing useful models for a variety
of phenomena. Moreover, under suitable circumstances a number of non-Gaussian
fractal-rate processes converge to these Gaussian processes. An excellent overview
of the properties of fractional Brownian motion (Sec. 6.1) and fractional Gaussian
noise (Sec. 6.2) has recently been provided by Taqqu (2003).

6.1 FRACTIONAL BROWNIAN MOTION

A concise mathematical description of ordinary Brownian motion (as represented by
the Wiener–Ĺevy process) was provided in Sec. 2.4.2. The elements offractional
Brownian motion, an important generalization, were set forth by Kolmogorov (1940)
and extensively developed by Mandelbrot & Van Ness (1968). A brief historical
account of fractional Brownian motion has recently been provided by Molchan (2003).
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FRACTIONAL BROWNIAN MOTION 137

6.1.1 Definition

Fractional Brownian motion,BH(t), is defined using the same three features that we
specified for ordinary Brownian motion,B(t): the amplitude distribution, the mean,
and the autocorrelation. Like ordinary Brownian motion, fractional Brownian motion
is Gaussian (Mandelbrot & Van Ness, 1968): a vector{BH(t1), BH(t2), ..., BH(tk)},
for any positive integerk and any set of times{t1, t2, ..., tk}, has a joint Gaussian
distribution. Fractional Brownian motion, as usually defined, also belongs to the
zero-mean class of stochastic processes:E[BH(t)] = 0 for all t.

The distinction between the fractional and ordinary versions thus lies in their
autocorrelations. For fractional Brownian motion the autocorrelation takes the form
(Kolmogorov, 1940; Mandelbrot & Van Ness, 1968)

E[BH(s) BH(t)] = 1
2E[B2

H(1)]
(|t|2H + |s|2H − |t− s|2H

)
, (6.1)

with (Barton & Poor, 1988)

E[B2
H(1)] = Γ(1− 2H) cos(πH)/(πH). (6.2)

The parameterH, known as theHurst exponent, assumes values between zero and
unity. For H = 1

2 , BH(t) is ordinary Brownian motion so thatB 1
2
(t) ≡ B(t)

(Mandelbrot& Van Ness, 1968). Hurst’s (1951; 1956; 1965) pioneering work on
long-range correlations in river flows, for which he developed rescaled range analysis
as described in Sec. 3.3.5, also served as a precursor to fractional Brownian motion
and its related processes (Mandelbrot, 1965b, 1982).

Fractional Brownian motion can be expressed in terms of ordinary Brownian mo-
tion:

Γ(H + 1
2 )BH(t) =

∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s)

+
∫ t

0

(t− s)H−1/2 dB(s) (6.3)

=
∫ t

−∞
(t− s)H−1/2 dB(s)

−
∫ 0

−∞
(−s)H−1/2 dB(s). (6.4)

Indeed, this relationship often serves as a definition of fractional Brownian motion
(Mandelbrot & Van Ness, 1968). Equation (6.3) comprises convergent integrals,
whereas Eq. (6.4) exhibits more symmetry at the expense of employing divergent
integrals (although with the same, convergent difference).

The standard deviation of fractional Brownian motion varies astH , so that this
process is not stationary. However, manipulation of Eqs. (6.1), (6.3), or (6.4) reveals
that fractional Brownian motion does have stationary increments:

Pr {BH(t2 + s)−BH(t2) > x} = Pr {BH(t1 + s)−BH(t1) > x} (6.5)

for all timess, t1, t2, and for all amplitudesx.
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138 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

6.1.2 Properties

Like ordinary Brownian motion, fractional Brownian motion contains statistical copies
of itself (Mandelbrot & Van Ness, 1968). Scaling the time axis of Eq. (6.1) by a factor
a yields a new processBH(at) with autocorrelation

E[BH(as)BH(at)] = |a|2H E[BH(s) BH(t)]; (6.6)

scaling the amplitude directly byb yieldsbBH(t), with autocorrelation

E[bBH(s) bBH(t)] = b2 E[BH(s) BH(t)]. (6.7)

By construction, bothBH(at) andbBH(t) also have zero mean and belong to the
Gaussian family of processes. Setting|b| ≡ |a|H makes the two autocorrelations co-
incide, and since the mean and autocorrelation uniquely determine a Gaussian process
(Feller, 1971),BH(at) and|a|HBH(t) are statistically identical. Thus, changing the
time axis by a scalea and the amplitude axis by a scale|a|H yield the same result,
andBH(t) contains statistical copies of itself at any scale. This argument generalizes
the result set forth at the end of Sec. 2.4.2.

The definition provided in Sec. 6.1.1 leads to a number of other properties, includ-
ing level-crossing statistics and generalizations of the spectrum. Level crossings of
fractional Brownian motion, like those of ordinary Brownian motion, yield a degener-
ate point process; in any neighborhood about any level crossing, an infinite number of
other crossings exist. The same degeneracy occurred for the Lévy dust encountered
in Sec. 4.7, which this set of level crossings closely resembles. Imposing a minimum
resolvable interevent timeA results in a well-defined point process, for which the
interevent-interval densitypτ (t) follows the Pareto form (Ding & Yang, 1995)

pτ (t) = (1−H)A1−H tH−2, t > A. (6.8)

ForH 6= 1
2 , this point process exhibits dependencies among the interevent intervals,

and therefore does not belong to the renewal family of point processes.
As a result of its nonstationarity, difficulties arise in calculating the spectrum of

fractional Brownian motion. The Wigner–Ville spectrum (Ville, 1948),SW,X(t, f),
a generalization of the conventional spectrum, provides one solution to this problem.
For a continuous-time real-valued processX(t), this generalized spectrum takes the
form

SW,X(t, f) =
∫ ∞

−∞

{
E[X(t + s/2)X(t− s/2)]− E2[X]

}
e−i2πfs ds. (6.9)

For a wide-sense stationary process, the Wigner–Ville spectrum reduces to the con-
ventional spectrum:SW,X(t, f) = SX(f) for all t.

Applied to fractional Brownian motion, this transform yields (Flandrin, 1989)

SW,BH
(t, f) =

[
1− 21−2H cos(4πft)

] |2πf |−(2H+1)
. (6.10)

In a number of publications, the factor standing to the right of the brackets in Eq. (6.10)
is presented out of context, as if it had arisen from a conventional spectrum. This
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FRACTIONAL BROWNIAN MOTION 139

has led to the (false) impression that fractional Brownian motion has a true spectrum
that decays asf−(2H+1). Since this process is nonstationary, it does not possess a
conventional spectrum.

6.1.3 Synthesis

A variety of synthesis techniques exist for generating discrete-time samples of frac-
tional Brownian motion. An excellent overview of simulation methods, including
their accuracies and efficiencies, has been provided by Bardet, Lang, Oppenheim,
Philippe & Taqqu (2003). An early exact, but slow [O(M3)], method employed
Cholesky decomposition of the complete autocorrelation matrix (Lundahl, Ohley,
Kay & Siffert, 1986). Subsequent approximate methods reduced computational load
[O(M log M)] at the expense of exact results; these include spectral and midpoint
displacement methods (Peitgen & Saupe, 1988), improved spectral methods (Tim-
mer & König, 1995), and wavelet approaches (Tewfik & Kim, 1992; Flandrin, 1992;
Stoksik, Lane & Nguyen, 1994; Sellan, 1995; Abry & Sellan, 1996).

For0 < H ≤ 1
2 only, an exact and fast [O(M log M)] method is available (Lowen,

2000). It begins with a periodic discrete-time autocorrelationRx(n) proportional to
1− |n/M |2H for |n| ≤ M . Succeeding steps involve transforming this function into
the Fourier domain, taking the square root, randomizing the phase and amplitude,
transforming back, and subtracting the first element of the resulting sequence from
the rest. This final series yieldsM exact samples of fractional Brownian motion,
with a computational load of orderM log(M). Another efficient exact method relies
on circulant matrices and enjoys fast computation time [O(M log M)], although
minimum values forM exist (Davies & Harte, 1987).

6.1.4 Realizations

Figure 6.1 displays fractional Brownian motion for five different values ofH (0.1,
0.3, 0.5, 0.7, and 0.9). The realization forH = 0.5 corresponds to ordinary Brownian
motion (see also Fig. 2.2). To highlight the differences engendered by changing the
value ofH, we employ the same underlying white Gaussian random variables for
generating all curves.

For convenience, we employ the improved spectral method, retaining 500 samples
from a Fourier transform of length219 = 524288, or just under 0.1%. A fraction
as small as this results in negligible error. We normalize the plots so that all have a
range of unity, from minimum to maximum displayed values, and we displace them
from each other by unity.

Although the same statistical fluctuations appear in all five simulations, increasing
the fractional-Brownian-motion parameterH leads to smoother curves. Qualitatively,
larger values ofH have generalized spectra that decay more quickly with frequency
[see Eq. (6.10)]. Accordingly, these curves display a greater proportion of fluctuations
at larger time scales than those for smaller values ofH, and therefore appear smoother.
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140 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTIONH = 0:90:70:50:30:1
Fig. 6.1 Realizations of fractional Brownian motion forH = 0.1, 0.3, 0.5, 0.7, and 0.9, with
H largest at the top. Corresponding values of the fractal exponent areα = 2H + 1 = 1.2,
1.6, 2.0, 2.4, and 2.8, respectively (the relationship betweenH andα is provided in Sec. 6.3).
The same random seed serves for all five curves, so that they all have similar features. Larger
values ofH andα yield smoother curves.

Generalized dimensions provide a precise description of this smoothness, and for
true fractional Brownian motion (not the discrete-time approximations displayed in
Fig 6.1), the various generalized dimensions yield a value of2−H for the motion itself,
and1−H for its level crossings (Mandelbrot, 1982). Smaller values ofH yield larger
generalized dimensions, consistent with rougher curves. AsH approaches unity, the
generalized dimensions of fractional Brownian motion also approach unity, the value
for a nonfractal, perfectly smooth curve.

6.1.5 Rate process

In serving as a rate for a point process, fractional Brownian motion exhibits two
difficulties: nonstationarity and negative values. One solution to the nonstationarity
issue involves imparting a cutoff at low frequencies, effectively imposing a longest
time scale. An approximation of this kind yields useful results in many cases and can
greatly simplify the associated theoretical and computational tasks. Other techniques
are also available, including nonlinear ones such as resetting the fractional Brownian
motion when it reaches a certain threshold, but these lead to more significant deviations
from ideal behavior and to increased mathematical complexity.

Negative values, which do not make sense for a point-process rate, can be handled
by offset, nonlinear transform, or both. The offset method, applied to a process ren-
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FRACTIONAL GAUSSIAN NOISE 141

dered stationary by including a low-frequency cutoff, makes use of a mean value that is
significantly larger than the standard deviation, so that the resulting fractional Brow-
nian motion essentially always remains positive. The nonlinear transform method
uses a nonlinear functionf(x) that generates a nonnegative output regardless of the
inputx, but this is achieved at the price of distorting the process. Candidate functions
includef(x) = (x + |x|)/2, as well as smoother and more complex forms such as
f(x) = c ln(1 + ex/c) for some constantc > 0.

6.2 FRACTIONAL GAUSSIAN NOISE

Fractional Gaussian noiseB′
H(t) represents the derivative of fractional Brownian

motion, much as white Gaussian noise represents the derivative of ordinary Brownian
motion.

6.2.1 Definition

Like white Gaussian noise,fractional Gaussian noisedoes not exist in a mathe-
matical sense since fractional Brownian motion does not have a proper derivative.
In contrast to fractional Brownian motion, where introducing a low-frequency cut-
off ameliorates the effects of nonstationarity, a tractable approximation for fractional
Gaussian noise is attained by introducing a high-frequency cutoff.

Perhaps the simplest method for obtaining fractional Gaussian noise in the face of
the nondifferentiability of fractional Brownian motion entails convolving the latter
with a rectangular filter before forming the derivative (Mandelbrot & Van Ness, 1968):

B′
H2(t, v) = v−1 d

dt

∫ t+v/2

t−v/2

BH(u) du

=
BH(t + v/2)−BH(t− v/2)

v
. (6.11)

This yields a process whose statistics resemble those of true fractional Gaussian
noise, for time scales significantly greater than the separation timev. Other piece-
wise smooth filter functions yield similar results, but with increased mathematical
complexity.

6.2.2 Properties

Combining Eqs. (6.9), (6.10), and (6.11) provides the Wigner–Ville spectrum of this
filtered version of fractional Gaussian noise,

SW,B′
H2

(t, v, f) = 4v−2 |2πf |−(2H+1) sin2(πfv) (6.12)

lim
v→0

SW,B′
H2

(t, v, f) = |2πf |−(2H−1), (6.13)

where Eq. (6.13) yields the same result as that obtained for true fractional Gaussian
noiseB′

H(t) using direct methods (Flandrin, 1989). Thus, true fractional Gaussian
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142 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

noise has a spectrum that follows a pure power-law decaying form, as does its ap-
proximationB′

H2(t, v) for frequencies much lower than the effective cutoff frequency
fS = (2πv)−1. Neither Eq. (6.12) nor Eq. (6.13) depend on time since both fractional
Gaussian noise and its filtered version are stationary. Equation (6.12) does depend
onv, but this is a filter parameter.

6.2.3 Synthesis

As a stationary process, fractional Gaussian noise has an autocorrelation with only
one argument. Since the process also has a zero mean, this single-argument function
completely specifies the fractional Gaussian noise process, simplifying simulation
considerably.

A simpler variant of the method delineated by Lowen (2000) generates discrete-
time realizations of fractional Gaussian noise forH > 1

2 only (Davies & Harte,
1987). However, running sums of this process do not yield realizations of fractional
Brownian motion; generating the latter over an interval(0, t) from fractional Gaussian
noise requires integrating over all times within that interval. Samples of fractional
Gaussian noise lack information about the process at times other than the samples,
and therefore cannot generate a proper integral of the underlying continuous-time
fractional Gaussian noise. Similarly, differencing discrete-time samples of fractional
Brownian motion does not yield samples of fractional Gaussian noise.

6.2.4 Realizations

Figure 6.2 displays fractional Gaussian noise for four different values ofH (0.1, 0.3,
0.7, and 0.9), as well as for white Gaussian noise (H= 0.5) (see also Mandelbrot
& Wallis, 1969a). To highlight the differences associated with various values ofH,
we again employ the same underlying white Gaussian random variables to generate
all curves. Simulation methods, including the underlying random variables, follow
those used for producing Fig. 6.1.

Again, increasingH leads to smoother curves, albeit with similar statistical fluctu-
ations. In contrast to the results for fractional Brownian motion displayed in Fig. 6.1,
these curves fill part of the plane near their mean values, so that the generalized di-
mensions assume a value of two in all cases. Similarly, the level crossing sets all have
generalized dimensions of unity.

6.2.5 Rate process

Unlike fractional Brownian motion, fractional Gaussian noise is stationary. Like
fractional Brownian motion, however, it can assume negative values. To enable
fractional Gaussian noise to serve as a rate, the same methods used to ameliorate the
negative-value shortcoming of fractional Brownian motion can be used for fractional
Gaussian noise as well (see Sec. 6.1.5).
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NOMENCLATURE FOR FRACTIONAL PROCESSES 143H = 0:90:70:50:30:1
Fig. 6.2 Realizations of fractional Gaussian noise forH = 0.1, 0.3, 0.5, 0.7, and 0.9,
with H largest at the top. Corresponding values of the fractal exponent areα = 2H − 1 =
−0.8, −0.4, 0.0, 0.4, and 0.8, respectively (the relationship betweenH andα appears in
Sec. 6.3). The same random seed serves for all five curves (as well as for the five curves in
Fig. 6.1) so that all have similar features. The curves become somewhat smoother asH andα
increase.

6.3 NOMENCLATURE FOR FRACTIONAL PROCESSES

6.3.1 Relationship between Hurst and scaling exponents

Fractional Brownian motion and fractional Gaussian noise have heretofore been de-
fined in terms of the Hurst exponentH. Since most other processes are cast in terms
of the scaling exponentα, we proceed to relate these two parameters.

We have thus far definedH in accordance with common usage: it lies between
zero and unity forboth fractional Brownian motion and fractional Gaussian noise
(Mandelbrot & Van Ness, 1968; Barton & Poor, 1988). We know, however, that the
spectrum of fractional Gaussian noise (FGN) varies asf−α = f−(2H−1) whereas
that for a stationary version of fractional Brownian motion (FBM) varies asf−α =
f−(2H+1). Thus, different relations are required to connect the exponents, depending
on the process:

FGN: α = 2H − 1 −1 < α < 1
FBM: α = 2H + 1

0 < H < 1
1 < α < 3.

(6.14)

However, the relationship betweenH andαapplicable for fractional Brownian motion
is sometimes also taken to apply to fractional Gaussian noise (Mandelbrot, 1982;
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144 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

Flandrin, 1992). This requires thatH span different ranges for the two processes:

FGN: −1 < H < 0 −1 < α < 1
FBM:

α = 2H + 1
0 < H < 1 1 < α < 3.

(6.15)

Since the ranges ofH differ in Eqs. (6.14) and (6.15), whereas those forα remain
the same, using the latter exponent avoids confusion. Hence, we generally eschew
the Hurst exponentH in favor of the scaling exponentα. We do continue to refer to
fractional Brownian motion asBH(t), however.

6.3.2 Fractional integration

It is clear from Eqs. (6.14) and (6.15) that the ranges of the exponentα for frac-
tional Gaussian noise and fractional Brownian motion differ by the integer two. This
results from a simple property of integration: the power-law exponent of the spec-
trum increases by precisely two (differentiation results in a decrease of the exponent
by precisely two). More generally, then-fold integration of a process results in an
increase in the exponent by2n.

Generalizing still further,x-fold Riemann–Liouville fractional integration corre-
sponds to an increase in the exponent by2x (see, for example, Pipiras & Taqqu, 2003).
Such fractional integration provides a method for generating fractional Brownian mo-
tion and fractional Gaussian noise from white Gaussian noise (Barnes & Allan, 1966;
Mandelbrot, 1967b; Maccone, 1981). Equations (6.3) and (6.4) represent just such
an operation, with the kernels in these integrals representing fractional integration of
degreeα/2 operating on the ordinary Brownian motion processB(t) (Mandelbrot &
Van Ness, 1968; Pipiras & Taqqu, 2003).

6.3.3 Fractal Gaussian processes

We do not intend to imply that fractional Brownian motion and fractional Gaussian
noise behave identically; they certainly differ in their stationarity. However, since
we focus on stationary processes throughout this book, we impose cutoffs on these
two processes when necessary, thereby obviating any differences associated with the
issue of stationarity.

Another distinction lies in some measures that provide useful scaling results for
fractional Gaussian noise, but not for fractional Brownian motion; this is a result of the
different ranges spanned byα in the two cases. For this reason, some authors have
suggested employing different methods for analyzing fractional Brownian motion
and fractional Gaussian noise (Raymond & Bassingthwaighte, 1999). However, if
we bear in mind the limited ranges of the various measures set forth in Sec. 5.2 and, in
particular, if we choose measures that prove useful for both processes, the significance
of this difference is reduced.

With the differences between fractional Brownian motion and fractional Gaussian
noise diminished in this context, it proves simpler and more accurate to refer to this
family of processes asfractal Gaussian processes, indexed by a spectral power-
law exponentα that may take any positive value (we specifically exclude fractional
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FRACTAL CHI-SQUARED NOISE 145

Gaussian noise withα ≤ 0 from this class for the reasons set forth in Sec. 5.2.1). We
then consider Figs. 6.2 and 6.1 as a unit; they display fractal Gaussian processes with
increasing smoothness as the value ofα climbs from0+ to 2.8.

With negative values ofα eliminated, and low-frequency cutoffs forα ≥ 1
imposed, the family of fractal Gaussian processes can dutifully serve as rate pro-
cesses, thereby enabling the construction of doubly stochastic Poisson point processes
(Sec. 4.3) and integrate-and-reset point processes (Sec. 4.4). Indeed, the integration
inherent in both of these constructions smoothes the rate sufficiently to render high-
frequency cutoffs unnecessary. Gaussian processes are convenient as rates because
they are ubiquitous and are fully characterized by their means and covariances; this
facilitates comparison with experiment. Moreover, they emerge from fractal binomial
noise and fractal shot noise in important limits, as discussed in Secs. 8.3.2 and 10.6.1,
respectively.

This process has, in fact, been used as a rate for a doubly stochastic Poisson process,
resulting in thefractal-Gaussian-process-driven Poisson process(see Fig. 5.5 as
well as Secs. 8.4 and 10.6.1). Because of its widespread applicability, we have chosen
it for the analysis and estimation studies carried out in Chapter 12.

In the domain of neurophysiology, for example, it is useful for modeling sequences
of action potentials. In particular, it has served as a valuable point of departure for
characterizing mammalian auditory-nerve action potentials for high-frequency stim-
uli (Teich, Turcott & Lowen, 1990; Teich, 1992; Lowen & Teich, 1993b). Low-
frequency stimuli are accommodated by forming a driving function from the super-
position of a fractal Gaussian process and the modulating stimulus. When modified
to accommodate the effects of neural refractoriness (see Sec. 11.2.4), the dead-time-
modified version of this process characterizes essentially all of the observable aspects
of auditory neural spike trains elicited by a broad range of stimuli, over a broad range
of time scales (Lowen & Teich, 1996b, 1997). We point out, however, that alterna-
tive fractal-based point-process constructs have also been formulated to describe the
auditory neural spike train (see Secs. 6.4, 6.6, and 8.4).

In a similar manner, thefractal-Gaussian-process-driven integrate-and-reset
processserves as an excellent model for action-potential generation in the periph-
eral visual system, provided that the rate process comprises a superposition of a
fractal Gaussian process and the modulating stimulus, and that neural refractoriness
(see Sec. 11.2.4) is accommodated (Teich & Lowen, 2003). Furthermore, imparting
random displacement (see Sec. 11.3) to the fractal-Gaussian-process-driven integrate-
and-reset process yields a model that serves as a good descriptor for the sequence of
human heartbeats (Teich et al., 2001). Nonfractal point processes serve as suitable
models only over short time scales.

6.4 FRACTAL CHI-SQUARED NOISE

The nonlinear transforms provided at the end of Sec. 6.1.5 ensure nonnegative rate
functions while introducing a minimum of change in the Gaussian amplitude distribu-
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146 PROCESSES BASED ON FRACTIONAL BROWNIAN MOTION

tion. For some applications, however, amplitude distributions other than the Gaussian
prove useful. As one example, we examine the properties of chi-squared noise.

If {Xk(t)}, 1 ≤ k ≤ M , represents a collection ofM independent and identically
distributed Gaussian processes with zero mean, varianceVar[X], and autocorrelation
RX(t), thenµ(t) ≡ ∑M

k=1 X2
k(t) has an autocorrelation given by

Rµ(t) ≡ E

[
M∑

n=1

X2
n(s)

M∑
m=1

X2
m(s + t)

]
=

M∑
n=1

M∑
m=1

E
[
X2

n(s)X2
m(s + t)

]

=
M∑

n=1


E

[
X2

n(s)X2
n(s + t)

]
+

∑

m6=n

E
[
X2

n(s) X2
m(s + t)

]



=
M∑

n=1


2R2

X(t) + E[X2] E[X2] +
∑

m6=n

E[X2] E[X2]




= 2MR2
X(t) + E2[µ]. (6.16)

In deriving this result, we have made use of the independence of the component fractal
Gaussian processesXk(t) that compriseµ(t), along with the well-known property

E[X1X2X3X4] = E[X1X2] E[X3X4]
+ E[X1X3] E[X2X4]
+ E[X1X4] E[X2X3]

(6.17)

for any four zero-mean jointly Gaussian random variables{X1, X2, X3, X4}.
The processµ(t) then has a chi-squared (χ2) distribution withM degrees of free-

dom (Feller, 1971). Standard probability theory yields the statistics of this amplitude,
including the probability density function

pµ(y) = [Γ(M/2)]−1 (
2Var[X]

)−M/2
yM/2−1 exp

(−y/2Var[X]
)

(6.18)

and moments

E[µn] =
Γ(n + M/2)

Γ(M/2)
(
2Var[X]

)n
. (6.19)

If X(t) belongs to the fractal class of continuous processes, with fractal exponentαX

in the range1
2 < αX < 1, thenRµ(t) also exhibits scaling, but with the exponent

αµ = 2αX − 1 (Thurner et al., 1997, see also Prob. 6.6). The result isfractal
chi-squared noise. SettingM = 2 yields fractal exponential noisesince theχ2

distribution with two degrees of freedom is the exponential distribution.
The chi-squared distribution with2M degrees of freedom successfully models a

whole host of phenomena, including the energy fluctuations of multimode thermal
light (Mandel, 1959; Saleh, 1978) and multimode acoustic noise (McGill, 1967).
Smearing the mean of a Poisson counting kernel with the chi-squared distribution
yields the associated photon-counting and neural-counting distributions for these two
processes. The result is thenegative binomial counting distribution (Mandel, 1959;
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McGill, 1967), the origin of which resides in Greenwood & Yule’s (1920) seminal
study of accident occurrences.

A related model employs the sum of the squares of positive-mean Gaussian noise
processes, which generates noncentral chi-squared noise. If the components belong
to the fractal class of continuous processes, the outcome isfractal noncentral chi-
squared noise. The presence of the nonzero mean modifies the second-order char-
acteristics of the process so that, in some cases, two power-law regions emerge with
both fractal exponents,αX andαµ, appearing in different ranges of the associated
spectrum (see Prob. 6.6). SettingM = 2 yieldsfractal noncentral Rician-squared
noise, since the noncentral chi-squared distribution with two degrees of freedom is
the noncentral Rician-squared distribution (Rice, 1944, 1945; Saleh, 1978).1

Fractal noncentral chi-squared noise has also been used as a rate for a doubly
stochastic Poisson point process, again to model mammalian auditory-nerve action
potentials (Kumar & Johnson, 1993). The Poisson transform of the noncentral chi-
squared distribution, which is known as thenoncentral negative binomial distribu-
tion, has found extensive use in photon counting and neural counting (Peřina, 1967;
McGill, 1967; Teich & McGill, 1976; Li & Teich, 1993).

6.5 FRACTAL LOGNORMAL NOISE

We consider an additional example of continuous rate process with a non-Gaussian
amplitude that finds use in many contexts:fractal lognormal noise. The term “log-
normal” refers to a random quantity whose logarithm follows a Gaussian (normal)
form (Aitchison & Brown, 1957; Gumbel, 1958). The exponential transform of a
fractal Gaussian process follows this form precisely and, furthermore, renders the
resulting process strictly positive so that it may serve as a rate without further trans-
formation.

Specifically, letX(t) represent a Gaussian process with meanE[X], variance
Var[X], and autocorrelationRX(t), and define a rateµ(t) ≡ exp[X(t)]. This rate
then has the lognormal probability density function

pµ(y) =
(
2πVar[X]

)−1/2
y−1 exp

(
−{

ln(y)− E[X]
}2

/2Var[X]
)

. (6.20)

Straightforward application of probability theory yields the moments of the rate (see
Lowen et al., 1997b, and Sec. A.3.1):

E[µn] = exp
(
nE[X] + n2 Var[X]/2

)

E[µ] = exp
(
E[X] + Var[X]/2

)
(6.21)

Var [µ] = exp
(
2E[X]

)[
exp

(
2Var[X]

)− exp
(
Var[X]

)]
.

1 A photograph of Rice stands at the beginning of Chapter 9.
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After a fair amount of calculation, a result for the autocorrelation emerges (see Lowen
et al., 1997b, and Sec. A.3.1):

Rµ(t) = E2[µ] exp
{
RX(t)− E2[X]

}
. (6.22)

We point out that the exponential transform can lead to rather skewed distributions
for µ. Substituting Eq. (6.21) into Eq. (3.4) yields a skewness given by

E[(µ− E[µ])3]/Var3/2[µ] =
[
exp

(
Var[X]

)− 1
]1/2 [

exp
(
Var[X]

)
+ 2

]
; (6.23)

this quantity assumes large values for relatively small values ofVar[X]. As an exam-
ple,Var[X] = 5 yields a skewness of 1826. In contrast, an exponential distribution
has a skewness of two, whereas a Gaussian has zero skewness.

With many of the properties of the rateµ(t) determined, we now consider point
processes generated from this rate. We begin with the Poisson-process version. If
we assume that the rateµ(t) exhibits fluctuations over frequency ranges significantly
lower than the mean rateE[µ], then closed-form expressions for the moments of the
intervalsτ between events exist (Lowen et al., 1997a,b):

E[τn] = n! exp
{
−n E[X] + (n2 − 2n) Var[X]/2

}

E[τ ] = exp
(−E[X]−Var[X]/2

)
(6.24)

Var[τ ] = exp
(−2E[X]

)[
2− exp

(−Var[X]
)]

,

where we have made use of Eq. (4.31). Employing Eq. (4.32) leads to the associated
interevent-interval probability density (Lowen et al., 1997a),

pτ (t) = π−1/2 exp
(
E[X] + 3

2 Var[X]
)

×
∫ ∞

−∞
exp

[
−y2 − t exp

(
E[X] + 2Var[X] +

√
2Var[X] y

)]
dy.

(6.25)

For the integrate-and-reset version, we again require that the rate processµ(t) not
exhibit fluctuations over frequencies comparable to, or higher than, the mean rate
E[µ]. Using Eq. (4.38) provides results similar to those presented in Eq. (6.24):

E[τn] = exp
{
−n E[X] + (n2 − 2n)Var[X]/2

}

E[τ ] = exp
(−E[X]−Var[X]/2

)
(6.26)

Var[τ ] = exp
(−2E[X]

)[
1− exp

(−Var[X]
)]

,

while combining Eqs. (4.37) and (6.20) yields

pτ (t) =
(
2πVar[X]

)−1/2 exp
(−E[X]−Var[X]/2

)

× exp
(
−{

ln(t) + E[X]
}2

/2Var[X]
)

t−2.
(6.27)
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We now turn to the specific case whereX(t) belongs to the family of fractal
Gaussian processes. The exponential transformation in Eq. (6.22) renders nonlinear
the relationship between the autocorrelation of the input processX(t) and that of the
rateµ(t); in particularSN (f), the spectrum of the generated point processdN(t),
does not follow an exact power-law decay as we assume forSX(f). This holds true
both for the doubly stochastic Poisson and integrate-and-reset versions. However,
when Var[X] is relatively small in comparison with unity, the forms of the two
spectra do not differ greatly. Conversely, one can construct a Gaussian process with
an appropriate autocorrelation such that the resulting lognormal noise has precisely
fractal characteristics. For example,RX(t) = c1 +(α−1) ln |t|, for 0 < α < 1, over
a large range of delay timest, yieldsSN (f) = c2f

−α over a corresponding range of
frequenciesf .

The fractal lognormal-noise-driven Poisson processturns out to be a suitable
model for describing vesicular exocytosis (see Lowen et al., 1997a,b, as well as
Prob. 6.8).

6.6 POINT PROCESS FROM ORDINARY BROWNIAN MOTION

Davidsen & Schuster (2002) have recently drawn attention to a simple but plausible
method for generating fractal-based point processes from ordinary Brownian motion
(see also Kaulakys, 1999). Their construct resembles a conventional integrate-and-
reset process but differs in that the threshold, rather than the integration rate, is taken
to be a stochastic process.

This kind of behavior occurs in neurophysiology, for example, where ion-channel
current fluctuations give rise to random threshold fluctuations. A variety of models
have been used to introduce such “fluctuations in excitability” (Pecher, 1939; Verveen
& Derksen, 1968; Holden, 1976, Chapters 1 and 4). In one well-established recipe,
the threshold undergoes diffusion, with or without drift, resulting in interval statistics
that obey the inverse-Gaussian density (Holden, 1976).

In the model considered by Davidsen & Schuster (2002), the rate remains fixed and
the threshold process is taken to be ordinary Brownian motion. When the integrated
state variable reaches the threshold, an output event is generated and the state variable
is reset to some fixed value, as with a conventional integrate-and-reset process. In
the case at hand, however, the threshold does not undergo a reset as a result of
the generation of the output event. To ensure both a tractable process and finite
interevent intervals, the threshold typically has lower and upper reflecting barriers,
and these barriers are greater than the state-variable reset values. The persistence of
the threshold across interevent intervals renders the process nonrenewal; the power-
law exponents associated withpτ (t) andSN (f) therefore need not coincide.

It turns out that the particular form of the integration employed does not qual-
itatively affect the result; a leaky integrator, for example, yields results similar to
those obtained by using the linearly increasing state variable described above. This
model generates fractal-based point processes with a rich variety of scaling behavior
in both the interevent-interval densitypτ (t) and the spectrumSN (f) (Davidsen &
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Schuster, 2002). It shows promise in characterizing a number of phenomena in the bi-
ological and physical sciences, including action-potential sequences and earthquake
occurrences (see Prob. 10.7, however).

Problems

6.1 Autocorrelation with scaled timeProve Eq. (6.6) using Eq. (6.1).

6.2 Stationary increments Prove Eq. (6.5) using Eq. (6.1).

6.3 Autocorrelation coefficient We can define an autocorrelation coefficient of
sorts for fractional Brownian motion,

ρ(s, t) ≡ E[BH(s)BH(t)]
(
E
[
B2

H(s)
]
E
[
B2

H(t)
])1/2

, (6.28)

assumingthat neithers = 0 nor t = 0.
6.3.1. Find a simplified version of Eq. (6.28), and show that it depends only on

the ratios/t.
6.3.2. Find a further simplification for the special cases = −t (Mandelbrot, 1982,

p. 353). Which values ofH makeBH(t) andBH(−t) independent?

6.4 Variance of ordinary Brownian motion at unity timeEquation (6.2) provides
an expression forE

[
B2

H(1)
]
, the variance of fractional Brownian motion at a time

of unity. Show that the resulting expression for ordinary Brownian motion (where
H = 1

2 ) assumes a value of unity.

6.5 Generation of ordinary Brownian motion The midpoint displacement algo-
rithm provides a simple and fast method for generating ordinary Brownian motion,
and permits the generation of additional detail (intermediate values) between points
already defined. Imagine a realization of ordinary Brownian motion sampled at in-
teger multiples of a sampling timeτ0; we thus haveB(kτ0) for all integersk. Now
we wish to insert intermediate values at timest = (k + 1

2 )τ0. LetN (0, 1) denote an
infinite sequence of Gaussian-distributed random variables with zero mean and unit
variance, independent of each other and of the samplesB(kτ0).

6.5.1. Given the valuesB(kτ0) andB[(k + 1)τ0], and a realization ofN (0, 1),
what value should we insert forB[(k + 1

2 )τ0]?
6.5.2. Show that this method does not ignore any other correlations among the

inserted values.
6.5.3. Show that this method fails for generalBH(kτ0), remaining valid only for

H = 1
2 .

6.6 Doubly stochastic Poisson process driven by fractal chi-squared rateLet
{Xk(t)}, 1 ≤ k ≤ M , represent a collection ofM independent and identically
distributed Gaussian processes with varianceVar[X] and autocorrelationRX(t).
Suppose we set the mean to some large value, such thatE2[X]/Var[X] À 1, and we
let one element of the collection [X1(t), say] serve as a rate for a doubly stochastic
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Poisson point processdN1(t). Suppose further thatdN1(t) has a spectrum that decays
as∼ f−αX with 1

2 < αX < 1 over some large range of frequencies. Now define

µ(t) ≡ ∑M
k=1

{
Xk(t) − E[X]

}2
, a fractal chi-squared process, and let this serve as

a rate for a separate doubly stochastic Poisson point processdNR(t).
6.6.1. Show thatdNR(t) has a spectrum that decays as∼ f1−2αX over an appre-

ciable range of frequencies.
6.6.2. What form does the spectrum take if we do not subtract the mean when

generating the rateµ(t), that is if we consider a fractal noncentral chi-squared process?

6.7 Spectrum for Poisson process driven by exponentiated-Gaussian processLet
X(t) denote a dimensionless Gaussian process with meanE[X], varianceVar[X],
and autocorrelation function

RX(t) ≈ E2[X] + c ln(t0/|t|) (6.29)

for delay timest in the rangeA ¿ t ¿ B, with constants0 < c < 1 andt0 > 0.
Now letµ(t) ≡ exp[X(t)] serve as a rate for a Poisson point process. Show that the
spectrum of the resulting point process follows a1/f -type form for frequenciesf in
the range1/B ¿ f ¿ 1/A. Also, find the high-frequency asymptote, the fractal
exponentα, and an expression for the cutoff frequencyfS .

6.8 Vesicular exocytosis at the synapseVesicular exocytosis is a mechanism
that mediates the passage of cellular signals from one cell to another across the
synapse between them (Katz, 1966). Exocytosis also occurs spontaneously, so that
neurotransmitter molecules flow across the synapse even in the absence of signaling
(Fatt & Katz, 1952), albeit at a substantially reduced rate. Spontaneous exocytosis
appears to have its origin in random thermal fluctuations; these cause ion channels
to open, which, in turn, admit sufficient calcium into the cell to trigger vesicular
exocytosis (Zucker, 1993).

Transition-state theory (Berry, Rice & Ross, 1980) describes the dependence of
the expected exocytic rateµ on various parameters of the cells (Hille, 2001), and
predicts that it follows the Arrhenius equation,

µ = A exp{− [EA − qV ] /RT } , (6.30)

whereA is a rate constant,EA is a constant activation energy,q is a constant charge
associated with the transition,R is the thermodynamic gas constant,T is the absolute
temperature, andV is the membrane voltage of the presynaptic cell.

6.8.1. What point process would be a suitable candidate for describing the se-
quence of exocytic events if the membrane voltageV is fixed?

6.8.2. How would the collection of processes associated with multiple cells be
described if we assume thatV is constant for each cell, but varies across cells?

6.8.3. In actuality, the membrane resting voltageV does not remain fixed, but
rather exhibits a Gaussian amplitude distribution with fractal (1/f-type) fluctuations
(Verveen & Derksen, 1968; Holden, 1976; Stern et al., 1997). This suggests that
the membrane voltage may be described by a fractal Gaussian process. Show how
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this leads to the fractal lognormal-noise-driven Poisson process as a model for the
spontaneous vesicular exocytosis process in real preparations (Lowen et al., 1997a,b).
We have already demonstrated that neither a fractal point process nor a multifractal
point process provides a good description for these data (see Prob. 5.5.3 and Fig. 5.11).

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005


	Lowen & Teich FBPP 2005 Cover.pdf
	Pages from Lowen & Teich FBPP 2005 Full-8.pdf



